77 research outputs found

    Burgers in het beleidsproces

    Get PDF

    Weak-coupling superconductivity in a strongly correlated iron pnictide

    Full text link
    Iron-based superconductors have been found to exhibit an intimate interplay of orbital, spin, and lattice degrees of freedom, dramatically affecting their low-energy electronic properties, including superconductivity. Albeit the precise pairing mechanism remains unidentified, several candidate interactions have been suggested to mediate the superconducting pairing, both in the orbital and in the spin channel. Here, we employ optical spectroscopy (OS), angle-resolved photoemission spectroscopy (ARPES), ab initio band-structure, and Eliashberg calculations to show that nearly optimally doped NaFe0.978_{0.978}Co0.022_{0.022}As exhibits some of the strongest orbitally selective electronic correlations in the family of iron pnictides. Unexpectedly, we find that the mass enhancement of itinerant charge carriers in the strongly correlated band is dramatically reduced near the Γ\Gamma point and attribute this effect to orbital mixing induced by pronounced spin-orbit coupling. Embracing the true band structure allows us to describe all low-energy electronic properties obtained in our experiments with remarkable consistency and demonstrate that superconductivity in this material is rather weak and mediated by spin fluctuations.Comment: Open access article available online at http://www.nature.com/articles/srep1862

    Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA

    Get PDF
    Mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities, is caused by an inherited deficiency of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). More than 100 mutations in the SGSH gene have been found to reduce or eliminate its enzymatic activity. However, the molecular understanding of the effect of these mutations has been confined by a lack of structural data for this enzyme. Here, the crystal structure of glycosylated SGSH is presented at 2Å resolution. Despite the low sequence identity between this unique N-sulfatase and the group of O-sulfatases, they share a similar overall fold and active-site architecture, including a catalytic formylglycine, a divalent metal-binding site and a sulfate-binding site. However, a highly conserved lysine in O-sulfatases is replaced in SGSH by an arginine (Arg282) that is positioned to bind the N-linked sulfate substrate. The structure also provides insight into the diverse effects of pathogenic mutations on SGSH function in mucopolysaccharidosis type IIIA and convincing evidence for the molecular consequences of many missense mutations. Further, the molecular characterization of SGSH mutations will lay the groundwork for the development of structure-based drug design for this devastating neurodegenerative disorder. © 2014 International Union of Crystallography.This work was funded by the DFG. Partial support from DFG grant No. SH 14/5-1 is gratefully acknowledged (NSS). IU is grateful to the Spanish MEC and Generalitat de Catalunya for financial support (grants BFU2012-35367, IDC-20101173 and 2009SGR-1036)Peer Reviewe

    Optical conductivity of superconducting Rb2Fe4Se5

    Full text link
    We report the complex dielectric function of high-quality nearly-stoichiometric Rb2Fe4Se5 (RFS) single crystals with Tc=32 K determined by wide-band spectroscopic ellipsometry and time-domain transmission spectroscopy in the spectral range 1 meV<=\hbar\omega<=6.5 eV at temperatures 4 K<=T<=300 K. This compound simultaneously displays a superconducting and a semiconducting optical response. It reveals a direct band-gap of 0.45 eV determined by a set of spin-controlled interband transitions. Below 100 K we observe in the lowest THz spectral range a clear metallic response characterized by the negative dielectric permittivity \epsilon 1 and bare (unscreened) \omega pl=100 meV. At the superconducting transition this metallic response exhibits a signature of a superconducting gap below 8 meV. Our findings suggest a coexistence of superconductivity and magnetism in this compound as two separate phases.Comment: 4 pages, 4 figure

    Spatial and temporal trends of burnt area in Angola: implications for natural vegetation and protected area management

    Get PDF
    Fire is a key driver of natural ecosystems in Africa. However, human activity and climate change have altered fire frequency and severity, with negative consequences for biodiversity conservation. Angola ranks among the countries with the highest fire activity in sub-Saharan Africa. In this study, we investigated the spatial and temporal trends of the annual burnt area in Angola, from 2001 to 2019, and their association with terrestrial ecoregions, land cover, and protected areas. Based on satellite imagery, we analyzed the presence of significant trends in burnt area, applying the contextual Mann–Kendall test and the Theil–Sen slope estimator. Data on burnt areas were obtained from the moderate-resolution imaging spectroradiometer (MODIS) burnt area product and the analyses were processed in TerrSet. Our results showed that ca. 30% of the country’s area burned every year. The highest percentage of annual burnt area was found in northeast and southeast Angola, which showed large clusters of decreasing trends of burnt area. The clusters of increasing trends were found mainly in central Angola, associated with savannas and grasslands of Angolan Miombo woodlands. The protected areas of Cameia, Luengue-Luiana, and Mavinga exhibited large areas of decreasing trends of burnt area. Conversely, 23% of the Bicuar National Park was included in clusters of increasing trends. Distinct patterns of land cover were found in areas of significant trends, where the clusters of increasing trends showed a higher fraction of forest cover (80%) than the clusters of decreasing trends (55%). The documentation of burnt area trends was very important in tropical regions, since it helped define conservation priorities and management strategies, allowing more effective management of forests and fires in countries with few human and financial resourcesinfo:eu-repo/semantics/publishedVersio

    Brief research report: Quantitative analysis of potential coronary microvascular disease in suspected long-COVID syndrome

    Get PDF
    BACKGROUND: Case series have reported persistent cardiopulmonary symptoms, often termed long-COVID or post-COVID syndrome, in more than half of patients recovering from Coronavirus Disease 19 (COVID-19). Recently, alterations in microvascular perfusion have been proposed as a possible pathomechanism in long-COVID syndrome. We examined whether microvascular perfusion, measured by quantitative stress perfusion cardiac magnetic resonance (CMR), is impaired in patients with persistent cardiac symptoms post-COVID-19. METHODS: Our population consisted of 33 patients post-COVID-19 examined in Berlin and London, 11 (33%) of which complained of persistent chest pain and 13 (39%) of dyspnea. The scan protocol included standard cardiac imaging and dual-sequence quantitative stress perfusion. Standard parameters were compared to 17 healthy controls from our institution. Quantitative perfusion was compared to published values of healthy controls. RESULTS: The stress myocardial blood flow (MBF) was significantly lower [31.8 ± 5.1 vs. 37.8 ± 6.0 (μl/g/beat), P < 0.001] and the T2 relaxation time was significantly higher (46.2 ± 3.6 vs. 42.7 ± 2.8 ms, P = 0.002) post-COVID-19 compared to healthy controls. Stress MBF and T1 and T2 relaxation times were not correlated to the COVID-19 severity (Spearman r = −0.302, −0.070, and −0.297, respectively) or the presence of symptoms. The stress MBF showed a U-shaped relation to time from PCR to CMR, no correlation to T1 relaxation time, and a negative correlation to T2 relaxation time (Pearson r = −0.446, P = 0.029). CONCLUSION: While we found a significantly reduced microvascular perfusion post-COVID-19 compared to healthy controls, this reduction was not related to symptoms or COVID-19 severity

    Complex financial networks and systemic risk: a review

    Get PDF
    In this paper we review recent advances in financial economics in relation to the measurement of systemic risk. We start by reviewing studies that apply traditional measures of risk to financial institutions. However, the main focus of the review is on studies that use network analysis paying special attention to those that apply complex analysis techniques. Applications of these techniques for the analysis and pricing of systemic risk has already provided significant benefits at least at the conceptual level but it also looks very promising from a practical point of view
    corecore